Как сделать лазерную сигнализацию руками. Хайтек на страже добра: gsm сигнализация, лазерные ловушки, системы охраны периметра

Современные системы безопасности развиваются стремительными темпами в связи с повышением общей криминогенной обстановки в мире. Пассивные средства – вневедомственная или личная охрана – уже неактуальны, и в целях защиты себя, своего имущества и бизнеса широко применяются современные системы защиты от злоумышленников, и они постоянно совершенствуются. А комплексное объединение различных систем позволяет более эффективно решить вопрос безопасности и при этом не переплачивать лишние деньги.

Этот вид сигнализации использует передачу радиосигнала, аналогичную тому же стандарту, который применяется при мобильной связи. В комплект входят базовый или контрольный блок, подключённый к любому оператору сотовой связи, и беспроводные датчики. На сим-карту, установленную в блок, и будет поступать тревожный вызов.

Для большей надёжности некоторые производители предусматривают использование двух и трёх сим-карт – на случай, если основная окажется вне зоны доступа. К станции подключаются беспроводные датчики, позволяющие обеспечить полный контроль над помещением. Управление системой осуществляется с помощью смс или кнопками брелоков. При наличии подключённой видеокамеры на электронную почту при срабатывании сигнализации поступает снимок.

Большим плюсом этих устройств является отсутствие проводов и необходимости производить их укладку .

Используются эти сигнализации для охраны дачи, дома, квартиры, гаража, склада, офиса – любой недвижимости.

Важно! Перед тем как выбрать производителя GSM-сигнализации, необходимо определиться, при какой температуре придётся её эксплуатировать и способна ли она работать в режиме, не зависящем от бесперебойной подачи электроэнергии.

Комплексы охраны периметра

Такие системы позволяют выявить и предупредить проникновение злоумышленников на огороженную территорию заблаговременно. Принцип их работы основан на распознавании вибрации или изменения электрического поля.

Комплект защитного устройства включает в себя:

  • датчики различного типа;
  • сенсорный кабель;
  • подсистему оповещения;
  • анализатор движения объекта;
  • компьютер со специальным ПО.

Периметральные устройства могут быть объединены с системами контроля доступа и видеонаблюдения. В случае использования стационарных систем необходимы заграждения для крепления датчиков и кабеля .

Наиболее популярные линии защиты периметра:

  • вибрационные;
  • ёмкостные;
  • радиоволновые;
  • радиолучевые.

Важные требования к устанавливаемой системе:

  • покрытие линии территории и отсутствие мёртвых зон;
  • защита устройства от климатических условий;
  • отсутствие вблизи охраняемой территории железнодорожных путей и деревьев;
  • возможность заземления.

Для защиты от ложных срабатываний используется метеорологический модуль, позволяющий учитывать воздействие атмосферных явлений на оборудование.

Подробнее о системах периметральной сигнализации читайте .

Автономные системы охраны

Это компактная система, имеющая функцию оповещения владельца о незаконном проникновении на территорию. Они подходят для небольших и слабо защищённых объектов, а также на объектах, не имеющих линии связи. просты в управлении, недороги, не имеют абонентской платы в качестве условия работы и не требуют участия оператора для управления системой.

Злоумышленник не сможет отключить автономную сигнализацию самостоятельно, так как она не подключается к бытовой электросети. Питание устройства осуществляется с помощью аккумуляторов различного типа.

Датчики, которые используются при работе автономной охранной системы, бывают:

  • акустические;
  • инфракрасные;
  • вибрационные;
  • герконовые (реагирующие на изменения магнитного поля).

Принцип работы автономной системы охраны: при установке по периметру охраняемого объекта в случае обнаружения движущегося объекта датчики передают информацию на центральный контроллер, издающий звуковой сигнал.

Данные сигнализации делятся на два вида:

  • централизованные – передают информацию с датчиков на центральный пункт охраны;
  • автономные – принимают решения об оповещении самостоятельно, без взаимодействия с контроллерами.

Из минусов данных систем можно выделить уязвимость для электронных сигналов в условиях мегаполиса и помех, создаваемых железобетонными конструкциями.

Лазерные устройства

Принцип её работы предельно прост и основан на фотореле: при пересечении злоумышленником лазерного луча, направленного на специальный фотоэлемент, создаётся преломление, в результате чего реле отключается и срабатывает датчик, затем подаётся сигнал на специальный извещатель. Система может быть дополнительно оснащена сиреной, но чаще при срабатывании приходит сигнал оповещения прямо на пульт дежурного полиции, не слышное злоумышленнику. Это позволяет выиграть время и поймать преступника с поличным.

Используются такие сигнализации для охраны помещений, садовых участков.

Преимущества лазерной охранной системы:

  • мобильность;
  • возможность маскировки.

Из минусов можно назвать высокую стоимость устройства и большой процент ложных срабатываний (птицы, животные). При желании такую систему несложно собрать .

GPS-сигнализация

Этот вид охранной системы базируется на принципах работы систем глобального позиционирования, или спутников. Точность определения местонахождения объекта колеблется от 3 до 20 метров.

Само устройство достаточно компактно, оно часто используется для контроля за живыми объектами: детьми, пожилыми родственниками, домашними животными. А также с его помощью можно защитить от кражи ценности – картину, мебель, книгу.

Широкое распространение получила в разработке охранных систем для защиты авто от вскрытия и угона.

Для охраны помещений в комплекте предусмотрена видеокамера и канал передачи видео на мобильный телефон, также имеется возможность голосовой связи и наличие инфракрасной подсветки для съёмки в темноте.

Данный вид охранной сигнализации не предусматривает прокладку кабеля, а также опережает другие системы по скорости оповещения владельца , что делает её весьма привлекательной. Из минусов можно назвать зависимость от бесперебойной сотовой связи и высокую стоимость.

Инфракрасная сигнализация

Действие этой системы основано на использовании инфракрасных датчиков. При пересечении нарушителем ИК-луча нарушается последовательность импульсов, подаваемых на приёмник, цепь замыкается, и на пульт дежурного поступает сигнал тревоги.

Устройство состоит из:

  • инфракрасных передатчиков и приёмников;
  • блока питания;
  • блоков индикации и сигнализации.

ИК-извещатели подразделяются по принципу действия на:

  • активные;
  • пассивные,

по типу зоны обнаружения – на:

  • объёмные;
  • поверхностные;
  • линейные.

Система инфракрасной защиты в зависимости от модели оснащается датчиком температуры, встроенным микрофоном, выносной или встроенной камерой, громкоговорителем, датчиками удара, перемещения, открытия дверей.

Инфракрасные сигнализации чаще всего используются в системе “Умный дом”.

Правильный выбор охранной сигнализации диктуется как объективными условиями и техническими характеристиками помещения или пространства, нуждающегося в охране, так и стоимостью и многими другими факторами. Консультация специалиста поможет определиться с выбором устройства и станет гарантией спокойствия владельца.

Всем салют! Если в вашем районе не раз совершались ограбления или есть такая опасность, а вам хочется спать ночью спокойно, то вы наверняка задумывались над вопросом: а не поставить ли мне сигнализацию?.
Но сложные системы безопасности не всегда по карману, да и на монтаж и обслуживание приходится тратить и тратить. Правда есть и дешевые сигнализации, но злоумышленники уже давно научились выключать их, поэтому, сегодня я вам покажу, как самому сделать простую и недорогую лазерную охранную сигнализацию.

Схема лазерной сигнализации

Так как сегодня много схем, я показал вам, на мой взгляд, самую актуальную, с использованием очень популярной микросхемы NE555.

Для сборки нам пригодятся следующие компоненты: piezo buzzer (который будет издавать сигнал), два резистора (750 Ом, 130 кОм), микропереключатель , фоторезистор ну и микросхема интегрального таймера NE555 .

Немного о таймере NE555

Был разработан 1972 году компанией Signetics. Он имеет широкий диапазон питающих напряжений: от 4.5 до 18 В, выходной ток достигает 200 мА, а микросхема сама потребляет не много. Точность работы микросхемы не зависит от питающего напряжения. Внутри таймера немало элементов: около 20 транзисторов и много других деталей.

Микросхема имеет восемь ножек:

  1. Земля
  2. Запуск
  3. Выход
  4. Сброс
  5. Контроль
  6. Разряд
  7. Питание

Важно помнить, что на вторую ножку (запуск) нужно подавать не более 1/3 напряжения питания, а на шестую ножку (стоп) 2/3 напряжения питания!

Вернемся к нашему лазеру. Лазерный луч направлен на фоторезистор. Когда он не облучается, это приводит к повышению напряжения на шестой ножке микросхемы, в результате чего включается пищалка. Выключить динамик можно нажав на микропереключатель. Смотрим короткое видео:

Выбор резистора R1 и R2 зависит от напряжения питания. Например у меня напряжение питания 4,5 В, поэтому я выбрал резисторы R1- 130 кОм, R2 — 750 Ом. Так как батарейки лазера быстро садятся, лазер можно подключить к более мощному питанию, обычно с напряжением 4,5 В.

С помощью нескольких зеркал можно покрыть лучами всю комнату, главное чтобы последнее зеркало направляло луч прямо в центр резистора .

Лазерная сигнализация будет предупреждать вас всегда, когда вы рядом, но можно и подключить более серьезную схему: например с SMS оповещением. Если интересно, дайте знать. Вот и все, спите спокойно, хороших снов!

С уважением, Эдгар.

Хотели бы вы сделать лазерную растяжку-сигнализацию, которую вы могли видеть в шпионских боевиках? Ее вполне возможно собрать самостоятельно из недорогих и вполне доступных компонентов.



Схемы, представленные в данном материале, помогут вам сделать устройство, которое может обнаружить движение людей или других объектов при их прохождении через лазерный луч и подать сигнал тревоги при необходимости.


Устройство состоит из двух цепей: цепи излучения лазерного луча и цепи приема лазерного луча. Схема приемника включает в себя электромагнитное реле для подключения какой-либо внешней электрической нагрузки, например, прожектора. системы домашней сигнализации и т п.


Схема излучения лазерного луча



В основе этой схемы лежит стандартный красный лазерный светодиод с длиной волны 650 нм и мощностью 5 мВт. Лазерный диод питается напряжением источника 5 В. Последовательно с ним соединены два вспомогательных компонента: диод D1 (1N4007) и резистор R1 сопротивлением 62 Ом. Для получения лазерного диода можно разобрать ненужную, но рабочую лазерную указку, если нет желания идти в магазин радиоэлектронных компонентов для покупки отдельного лазерного диода.


Схема приема лазерного луча



Основой схемы приема лазерного луча является фоторезистор LDR 5 мм. Этот компонент используется для управления релейной цепью, которая активируется посредством кремниевого тиристора T1 (BT169). Диод D2 (1N4007), соединенных антипараллельно с электромагнитным реле RL1, выполняет роль обычного диода для защиты электроники от повреждений, вызванных противо-ЭДС импульса катушки реле, когда тиристор T1 выключается. Обратите внимание, что реле должно быть под напряжением, то есть ее контакт должен быть замкнут, когда лазерный луч не светит на фоторезистор. Вы можете использовать выключатель питания S1 для включения или отключения вашей лазерной сигнализации.


Установка лазерной растяжки-сигнализации


Если вы планируете обезопасить путь на своей лестнице, то лучше установить лазерную сигнализацию, как показано на приведенном ниже рисунке.



Прежде всего, попытайтесь поместить модуль излучателя и модуль приема в верхней части лестницы с небольшим расстоянием между ними. Затем направьте лазерный луч от излучателя на отражатель, расположенный в нижней части лестницы и выровняйте его с датчиком света приемника лазерного луча. С другой стороны, если вы хотите защитить широкую по объему зону, то будет лучше использовать ряд отражателей или зеркал вместе с такой с лазерной системой сигнализации.

Сложные покупные системы безопасности и серьёзные сигнализации нужны не всегда да и не каждому по карману. Их стоимость, монтаж и обслуживание оправдано в случае охраны дорогих объектов. Если же необходимо установить систему безопасности на даче или в гараже, да и в квартире или доме, то затраты на готовую хорошую покупную сигнализацию зачастую не совместимы с Вашим бюджетом. От предлагаемых на рынке дешевых охранных сигнализаций лучше отказаться (особенно с радио управлением - их давно научились сканировать и отключать без каких либо проблем). В этом случае проще и однозначно в разы дешевле сделать простую самодельную сигнализацию , например, как один из вариантов, лазерную охранную сигнализацию.

На сегодняшний день существует много разнообразных схем лазерной сигнализации, но, как правило, такие устройства имеют достаточно сложную конструкцию. Ни одна самодельная схема такого устройства не обходится без микросхем и не совсем простой обвязки. Потом еще предстоит настройка и запуск, подбор конденсаторов, резисторов и т.д. Микросхемы тоже надо уметь паять. Можно вывести из строя перегревом или статикой и долго разбираться почему лазер не работает. Поэтому предлагаем упростить этот самый муторный кусок схемы и взять уже готовый китайский лазер (в любом магазине игрушек - стоит он не дорого - все готово и корпус и линзы и схема). Собрать же остальную схему под силу любому начинающему радиолюбителю.

Схема в этой постой лазерной охранной системе, реагирует на прерывание луча и состоит из излучателя (собственно лазерной указки) и приемника, можно использовать промежуточные зеркала, необходимые для переотражения луча и устройства оповещения - отпугивателя (сирена, свет). Возможно подключить и другие устройства оповещения, например, мобилку для передачи СМС или просто звонка (Под этим номером у Вас будет клиент - "Сработала сигнализация"). Испытания данной системы прошли успешно и эксплуатируется по сей день.

Работает сигнализация следующим образом - когда зону луча пересекает человек, лазер перестает освещать фотоэлемент его сопротивление увеличивается и происходит отключение реле. С отключением реле выключается и лазер (это сделано для того, чтобы после того как человек выйдет из зоны активации лазер не продолжал освещать фотоэлемент потому, что в таком случае сигнализация сработает на секунду и замолчит). Это простейшая схема.

Когда лазер освещает фотоэлемент, последний в цепочке работает в качестве провода, а когда лазер отключен, он превращается в резистор с большим сопротивлением. Фотоэлемент (фоторезистор) нужно установить закрытом со всех сторон корпусе, а трубка сделана из корпуса ручки и обклеена черной изоляционной лентой во избежания проникновения и попадания света на фотоэлемент.

Как уже сказали, в качестве лазера используется готовый модуль - игрушечный лазер с красным излучателем, питается от 3-x батареек с напряжением 1,4 каждая. На лазер припаяны провода,поскольку он будет питаться от блока питания с напряжением 4-4,5 вольт, так как батарейки для нас не выход. Лазер подключен к источнику питания не впрямую, а через резистор с сопротивлением 5 ом. Мощность сопротивления 1 ватт. Зона активации может достигать до 10 метров в длину.

Реле имеет три контакта которые отключают лазер и включают сирену. Реле можно сделать самому или же подобрать готовое. У меня использовалось готовое реле но с перемотанной обмоткой, поскольку реле изначально работало от 12 вольт. Обмотка реле содержит 60 витков провода диаметром 0,4 мм.

Остальную часть конструкции - устройство оповещения - отпугивания можно применить готовое или тоже сделать самостоятельно. Один из вариантов.
Усилитель мощности выполнен на очень распространенной интегральной микросхеме TDA2005. Усилитель собран по мостовому варианту включения, этим обеспечивается достаточно большая выходная мощность в 20 ватт! Модуль с усилителем не устанавливают на радиатор как это обычно делают, поскольку усилитель работает от пониженного источника питания в 4 - 4,5 вольт, к тому же он почти все время выключен.

Емкость входного конденсатор можно изменять в большом диапазоне. Чем меньше емкость конденсатора, тем выше и стервознее становится звук сирены. Также можно использовать усилитель на микросхеме TDA2003, но результат чуть xуже (громкость воя сирены будет в два раза меньше). Динамическая головка типа 25 гдн или аналогичная. Возможно применения пьезоголовок (с пьезоголовкой результат намного лучше). Генератор звука (имитатор сирены, собран на логичном элементе К155ЛАЗ.)

Схема такого генератора во многом сходна со схемой транзисторного симметричного мультивибратора. Импульсы, генерируемые элементами микросхемы, преобразуются динамической головкой в звуковые колебания. Длительность импульсов определяется емкостями С1, С2 и сопротивлениями R1 и R2. Устройство состоит из двух генераторов: тактовых импульсов и звуковой частоты. Первый выполнен на элементах DD1.1 и DD1.2, а второй - на DD1.3 и DD1.4. Каждый из генераторов собран по несимметричной схеме. Имитация звука сирены достигается за счет того, что тактовый генератор управляет работой генератора звуковой частоты. Динамическая головка BА1 звучит в те промежутки времени, когда на входе 13 элемента DD1.3 появляется логическая "1". С выхода 6 элемента DD1.2 следуют прямоугольные импульсы, управляющие звуковым генератором, частота которых зависит от номиналов С1 и R1. Привожу вам два варианта имитаторов звука сирены, какой собрать решайте сами. Динамическую головку нужно убрать из схемы имитатора и подключить к вxоду усилителя мощности звуковой частоты.

Блоком питания служит обыкновенный сетевой трансформатор на 20 ватт. Поскольку вся сигнализация питается от напряжении 4 - 4,5 вольт, нужно взять сетевой трансформатор с напряжением 12 или 6 вольт и чуть переделать вторичную обмотку. Первичная обмотка содержит 40 витков провода с диаметром 0,7 мм (с числом витков нужно поэкспериментировать, главное иметь рабочее напряжение 4 - 4,5 вольт. После завершения отдельных устройств (имитатор, датчик, усилитель мощности) приступаем к сборке устройства. Самое сложное - датчик. Лазер нужно поставить так, чтобы его луч был направлен прямо в трубку с фотоэлементом и обеспечивал его работу.

Включаем устройство так - сначала включаем выключатель, затем нажимаем на кнопку которая активирует лазер и быстро опускаем кнопку (кнопка без фиксации). В моем устройстве применены два усилителя мощности для получении более громкого звука. Датчик с реле собран в корпусе от китайского фонаря. Дальше после установки и включения идем к зоне активации и проходим через нее. Мгновенно сработает реле и сигнализация заработает.

Приведем еще одну схему приемника лазерной охранной сигнализации на транзисторах


Данная схема охранной сигнализации представляет собой датчик пересечения кем то не было лазерного луча. Схема состоит из двух основных блоков:
1. фотореле (VT1, VT2);
2. реле времени (VT3, VT4).

Работает схема следующим образом.
Датчиком фотореле выступает фоторезистор R1, включенный в цепь базы транзистора VT1 последовательно с ограничивающим резистором R2. Темновое сопротивление фоторезистора достаточно велико. Коллекторный ток транзистора VT1 в это время мал и транзистор VT2 находится в открытом состоянии. Его коллекторный ток протекает через обмотку реле KV1 тем самым удерживая контакты в замкнутом положении. При освещении фоторезистора его сопротивление уменьшается, что приводит к увеличению тока базовой цепи транзистора VT1, а следовательно и к увеличению его коллекторного тока. Падение напряжения на резисторе R4, созданное протеканием коллекторного тока транзистора VT1 закрывает транзистор VT2 и реле KV1 отключается. Таким образом при освещении лазерным лучем фоторезистора реле KV1 отключено, а при пересечении луча злоумышленником оно сработает, своим контактом KV1.1 запустит реле времени и снова вернется в исходное состояние.
Реле времени работает следующим образом. В исходном состоянии, когда контакт KV1.1 разомкнут напряжение на конденсаторе C1 равно нулю. В это время транзисторы VT3 и VT4 закрыты, ток через обмотку реле KV2 не течет и его контакты, включающие исполнительный механизм разомкнуты (контакты на схеме не указаны). При кратковременном срабатывании реле KV1 конденсатор C1 заряжается и тут же начинает разряжаться через эмиттерный переход транзистора VT3 и резистор R8, при этом транзисторы VT3 и VT4 откроются, реле KV2 сработает и своими контактами включит исполнительный механизм.
После разряда конденсатора схема возвращается в исходное состояние. Резистором R6 можно регулировать выдержку времени.

В рабочем состоянии, при пересечении злоумышленником лазерного луча сработает схема и запустится система оповещения (например звуковая или световая сигнализация), через некоторое время отключится и снова будет ждать нарушителя, то есть вернется в исходное состояние без вмешательства. Это особенно важно для охраны удаленных объектов, например гаража или дачи.

Луч лазера имеет очень маленький процент расходимости, поэтому с его помощью можно контролировать довольно большие расстояния периметров. Применив систему зеркал можно контролировать любые сложные помещения, только стоит учитывать, что зеркала должны быть качественными и чистыми.

Итак, для охраны какого-либо объекта на нем необходимо закрепить зеркало-отражатель (достаточно кусочка размером 1 х 1 см) и установить приемник и излучатель так, чтобы луч попадал на фоточувствительный элемент, отразившись от зеркала.

Однако в этом случае даже при незначительном смещении (или колебании) охраняемого объекта луч выходит из окна приемника и система срабатывает.
С целью несколько снизить чувствительность системы, чтобы она не срабатывала при колебаниях почвы, например, из-за проезжающего тяжелого транспорта, необходимо немного изменить оптическую схему, сделав вход фотоприемника таким, как на рисунке.

Приемник для лазерной системы охраны
1-линза, 2-бленда-тубус, 3-фотоприемник, 4-корпус

Для этого надо вставить в бленду-тубус собирающую линзу с фокусным расстоянием F. Диаметр этой линзы и будет определять чувствительность системы (здесь имеется в виду не электрическая чувствительность фотоприемника, а чувствительность, относящаяся к интенсивности воздействия на охраняемый объект).

Если при колебаниях зеркала отраженный от последнего луч лазера не выходит за пределы линзы, то датчик не срабатывает. Следовательно, меняя диаметр линзы, можно регулировать чувствительность системы охраны.

В этой статье мы расскажем, как сделать лазерную сигнализацию. Идея заключается в том, чтобы сделать такую сигнализацию, как показывают в фильмах, про супергероев.

Эта лазерная сигнализация имитирует – растяжку, когда тонкая проволока натянута в 20 сантиметрах над землей (полом). Когда злоумышленник, проникает на охраняемую территорию и цепляет растяжку - активируется сигнал тревоги. А что если сделать лазерную сигнализацию и растяжку сразу? Правильно, так получится совсем интересно.

Рассматриваемая в статье сигнализация в первую очередь предназначена для использования в страйкболе, но можно применить ее и для охраны жилых помещений, гаража и т.д.

Принцип работы сигнализации на лазерной указке довольно прост.

Микроконтроллер PIC16F688 управляет лазерным модулем, посылающим луч, который должен быть возвращен посредством зеркала. Отраженный луч принимается фоторезистором. Микроконтроллер PIC16F688 проверяет состояние фоторезистора и если лазерный луч перекрыт - активирует звуковой сигнал.

Схема лазерной сигнализации довольно проста и представлена на следующем рисунке:

Для изменения режимов работы служит переключатель S3 - выбора режима работы: лазер и / или растяжка:

  1. Лазер + растяжка.
  2. Растяжка.

Фоторезистор должен быть помещен внутри трубки, чтобы исключить попадание на него солнечного света или других источников света. Для исключения вероятности случайного срабатывания лазерной сигнализации.

А лазерную указку необходимо доработать, припаяв провода, на место установки батареек.

На следующем рисунке показан лазерный модуль и трубка для фоторезистора.

Чтобы объединить оба элемента их надо выровнять и склеить вместе, например, холодной сваркой или пластиком. Таким образом, они собираются параллельно друг другу.

Для варианта с растяжкой использован микропереключатель, помещенный в верхней части корпуса лазерной сигнализации. Рычаг микрика выступает над корпусом, через окно, чтобы можно было зацепить за него леску, нить или тонкую проволоку.

Теперь можно окончательно доделать корпус, сделав отверстия для светодиодов, кнопки включения, переключателей режимов и сирены.

Устанавливая излучатель с приемником, обратите внимание, что должна оставаться возможность регулировки этой части лазерной сигнализации.

В сигнализации используется модифицированный портативный бипер от ПК, потому, что он достаточно маленький и очень громкий. Но его электронная схема должна быть изменена, чтобы можно было подключить ее к микроконтроллеру PIC16F688.

По завершении сборки необходимо проверить работоспособность сигнализация из лазерной указки.

Схема работает следующим образом. При включении питания, устройство входит в режим настройки, проверяет лазер и дает нам знать, если отраженный луч правильно вернулся в приемник. В этот момент надо настроить зеркала. Если отраженный луч настроен правильно загорается красный светодиод.

После корректировки луча, надо нажать кнопку 1 раз для выхода из режима настройки и перехода в рабочее состояние.

Если лазерный луч перекрыть, микроконтроллер PIC16F688 отключит лазер и активирует сирену.
Сирена будет работать, пока не нажмете на кнопку. Голосов)